Publication – 2017

[1]          Z. Zhang, X. Huang, H. Li, H. Wang, Y. Zhao, and T. Ma, “All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo 2 S 4 @MnS and active carbon,” Journal of Energy Chemistry, 2017.

[2]          X. Zhang, D. Xu, D. Huang, F. Liu, K. Xu, H. Wang, et al., “Enhanced visible-light-driven photocatalytic activities of LiInO2 by Mo6+ -doping strategy,” Journal of the American Ceramic Society, 2017.

[3]          X. Zhang, A. Tang, Y. Jia, Y. Wang, H. Wang, and S. Zhang, “Enhanced visible-light-driven photocatalytic performance of Ag/AgGaO2 metal semiconductor heterostructures,” Journal of Alloys and Compounds, vol. 701, pp. 16-22, 2017.

[4]          S. Zhang, T. Wang, S. Lin, Y. Zhang, T. Tesfamichael, J. Bell, et al., “Effect of different thermo-treatment at relatively low temperatures on the properties of indium‑tin-oxide thin films,” Thin Solid Films, vol. 636, pp. 702-709, 2017.

[5]          F. Yu, T. Wang, Z. Wen, and H. Wang, “High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound,” Journal of Power Sources, vol. 364, pp. 9-15, 2017.

[6]          J. Ye, X. Zhang, L. Zhu, H. Zheng, G. Liu, H. Wang, et al., “Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering,” Sustainable Energy Fuels, vol. 1, pp. 907-914, 2017.

[7]          J. Ye, G. Liu, L. Jiang, H. Zheng, L. Zhu, X. Zhang, et al., “Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication,” Applied Surface Science, vol. 407, pp. 427-433, 2017.

[8]          W. Xu, S. Zhu, Y. Q. Liang, Z. D. Cui, X. J. Yang, A. Inoue, et al., “A highly efficient electrocatalyst based on amorphous Pd-Cu-S material for hydrogen evolution reaction,” Journal of Materials Chemistry A, 2017.

[9]          W. Xu and H. Wang, “Earth-abundant amorphous catalysts for electrolysis of water,” Chinese Journal of Catalysis, vol. 38, pp. 991-1005, 2017.

[10]        T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, et al., “2-Methylimidazole-Derived Ni–Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors,” ACS Applied Materials and Interfaces, vol. 9, pp. 15510-15524, 2017.

[11]        T. Wang, S. Zhang, and H. Wang, “Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode,” Science China Materials, vol. 61, pp. 296-302, 2017.

[12]        T. Wang, W. Xu, and H. Wang, “Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction,” Electrochimica Acta, vol. 257, pp. 118-127, 2017.

[13]        M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, “Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations,” Scientific Reports, vol. 7, pp. Article number-14025, 2017.

[14]        Y. Ren, B. Duan, Y. Xu, Y. Huang, Z. Li, L. Hu, et al., “New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach,” Science China Materials, vol. 60, pp. 392-398, 2017.

[15]        N. D. Pham, V. T. Tiong, P. Chen, L. Wang, G. J. Wilson, J. Bell, et al., “Enhanced perovskite electronic properties via a modified lead(ii) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells,” J. Mater. Chem. A, vol. 5, pp. 5195-5203, 2017.

[16]        H. D. Pham, H. Hu, K. Feron, S. Manzhos, H. Wang, Y. M. Lam, et al., “Thienylvinylenethienyl and naphthalene core substituted with triphenylamines-highly efficient hole transporting materials and their comparative study for inverted perovskite solar cells,” Solar RRL, vol. 1, p. Article no. 1700105, 2017.

[17]        X. Liu, F. Kong, S. Jin, W. Chen, T. Yu, T. Hayat, et al., “Molecular engineering of simple benzene–arylamine hole-transporting materials for perovskite solar cells,” ACS Applied Materials & Interfaces, 2017.

[18]        Y. Jiao, F. Ma, H. Wang, J. Bell, and A. Du, “Strain mediated bandgap reduction, light spectrum broadening, and carrier mobility enhancement of methylammonium lead/tin iodide perovskites,” Particle and Particle Systems Characterization, 2017.

[19]        X. Huang, Z. Zhang, H. Li, Y. Zhao, H. Wang, and T. Ma, “Novel fabrication of Ni 3 S 2 /MnS composite as high performance supercapacitor electrode,” Journal of Alloys and Compounds, 2017.

[20]        N. Duy Pham, V. Tiing Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, et al., “Guanidinium Thiocyanate Selective Ostwald Ripening Induced Large Grain For High Performance Perovskite Solar Cells,” Nano Energy, 2017.

[21]        R. B. Dunbar, B. C. Duck, T. Moriarty, K. F. Anderson, N. W. Duffy, C. J. Fell, et al., “How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories,” Journal of Materials Chemistry A, 2017.

[22]        F. Ali, N. Khoshsirat, J. Lipton-Duffin, H. Wang, K. Ostrikov, J. M. Bell, et al., “Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells,” Journal of Applied Physics, vol. 122, p. 123105, 2017.