Recent Posts

1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells

1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells

A method to form 1D pyrrolidinium lead iodide (PyPbI3) in situ atop photoactive 3D methylammonium lead iodide (MAPbI3) using pyrrolidine posttreatment is reported. As compared with 3D MAPbI3, 1D PyPbI3 has a wider bandgap and is more environmentally stable, and it serves as a tunneling […]

ACS Applied Materials & Interfaces Front Cover

ACS Applied Materials & Interfaces Front Cover

Excellent work by Disheng have been choosed as front cover for the ACS Applied Materials & Interfaces Journal. The work focuses on perovksite solar cell, using 2D Ruddlesden–Popper (PA)2PbI4 perovskites formed by n-propylammonium iodide with PbI2 produce a superhydrophobic surface to maintain the long-term stability […]

New publications on ACS Applied materials & Interfaces

New publications on ACS Applied materials & Interfaces

2D–3D Mixed Organic–Inorganic Perovskite Layers for Solar Cells with Enhanced Efficiency and Stability Induced by n-Propylammonium Iodide Additives

Disheng Yao, Chunmei Zhang, Shengli Zhang, Yang Yang, Aijun Du, Eric Waclawik, Xiaochen Yu, Gregory J. Wilson and Hongxia Wang.

Abstract Image

Device instability has become an obstacle for the industrial application of organic–inorganic metal halide perovskite solar cells that has already demonstrated over 23% laboratory power conversion efficiency (PCE). It has been discovered that the sliding of A-site cations in the perovskite compound through and out of the three-dimensional [PbI6]4– crystal frame is one of the main reasons that are responsible for decomposition of the perovskite compound. Herein, we report an effective method to enhance the stability of the FA0.79MA0.16Cs0.05PbI2.5Br0.5 perovskite film through the incorporation of n-propylammonium iodide (PAI). Both density functional theory calculation and the X-ray diffraction patterns have confirmed the formation of two-dimensional (PA)2PbI4 with the Ruddlesden–Popper perovskite as a result of the reaction between PAI and PbI2 in the perovskite film. X-ray photoelectron spectroscopy reveals less −COOH (carboxyl) groups on the surface of the perovskite film containing (PA)2PbI4, which indicates the suppressed penetration of oxygen and moisture into the perovskite material. This is further confirmed by the surface water wettability test of the (PA)2PbI4 film that exhibits excellent hydrophobic property with over 110° contact angle. Ultraviolet photoelectron spectroscopy demonstrates the introduction of PAI additives that resulted in the upshift of the conduction band minimum of the perovskite by 160 meV, leading to a more favorable energy alignment with an adjacent electron transporting material. As a consequence, enhanced 17.23% PCE with suppressed hysteresis was obtained with the 5% PAI additive (molar ratio) in perovskite solar cells that retained nearly 50% of the initial efficiency after 2000 h in air without encapsulation under 45% average relative humidity.


Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation

Yang Yang, Ngoc Duy Pham, Disheng Yao, Lijuan Fan, Minh Tam Hoang, Vincent Tiing Tiong, Zhaoxiang Wang, Huaiyong Zhu and Hongxia Wang.

Abstract Image

A carbon electrode with low cost and high stability exhibited competitiveness for its practical application in organic–inorganic hybrid perovskite solar cells (PSCs). Nonetheless, issues such as poor interface contact with an adjacent perovskite layer and obvious hysteresis phenomenon are bottlenecks that need to be overcome to make carbon-based PSCs (C-PSCs) more attractive in practice. Herein, we report an effective method to enhance the interfacial charge transport of C-PSCs by introducing the CuSCN material into the device. Two types of CuSCN-assisted devices were studied in this work. One was based on the deposition of an ultrathin CuSCN layer between the perovskite absorber layer and the carbon cathode (PSK/CuSCN/C), and the other was by infiltrating CuSCN solution into the carbon film (PSK/C-CuSCN) by taking advantage of the macroporous structure of the carbon. We have found that the CuSCN incorporation by both methods can effectively address the hysteretic feature in planar C-PSCs. The origin for the hysteresis evolution was unraveled by the investigation of the energy alignment and the kinetics of interfacial charge transfer and hole trap-state density. The results have shown that both types of CuSCN-containing devices showed improved interfacial charge carrier extraction, suppressed carrier recombination, reduced trap-state density, and enhanced charge transport, leading to negligible hysteresis. Furthermore, the CuSCN-incorporated C-PSCs demonstrated enhanced device stability. The power conversion efficiency remained 98 and 91% of the initial performance (13.6 and 13.4%) for PSK/CuSCN/C and PSK/C-CuSCN, respectively, after being stored under a high humidity (75–85%) environment for 10 days. The devices also demonstrated extraordinary long-term stability with a negligible performance drop after being stored in air (relative humidity: 33–35%) for 90 days.

A new review article on Energy & Environmental Science journal by Prof. Hongxia Wang

A new review article on Energy & Environmental Science journal by Prof. Hongxia Wang

The article “Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells” reviews the most recent advancement on understanding the interfaces in PSCs, in particular the interfaces of perovskite/electron transport layer (ETL) and perovskite /hole transport layer. Furthermore, It provides […]

PUBLICATION ON ENERGY STORAGE MATERIALS BY FENG YU

PUBLICATION ON ENERGY STORAGE MATERIALS BY FENG YU

Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window Abstract: Considerable efforts have been devoted to the development of zinc (Zn) batteries with new battery chemistries (eg. Zn-ion battery, Zn-halogen battery, Zn-alkaline battery, Zn-air battery) that are alternatives to Li-ion technology. Unfortunately, the […]

Open positions

Open positions

2 PhD scholarships are available from next year in the area of energy material and device .  Candidates should be solid background in chemistry, physics or material science and should have completed Master degree by research with at least 1 first author publication in decent journal. Research experience in solar cells, in particular perovskite solar cells  or electrochemistry is preferred but not compulsory. For candidate from non-English speaking country, satisfactory IELTS score is required to meet the entry for PhD at QUT.

ARC Discovery Projects Funding

ARC Discovery Projects Funding

Professor Hongxia Wang is granted the ARC Discovery Projects Funding 2019, the funding for world-leading research. The Approved Proposal: Green synthesis of organometal perovskite solar cells. This project aims to understand the mechanism that governs the formation and crystallisation process of organic-inorganic lead halide perovskite […]

New publication on Advanced Functional Materials by Ngoc Duy Pham

New publication on Advanced Functional Materials by Ngoc Duy Pham

The work “Tailoring Crystal Structure of FA0.83Cs0.17PbI3 Perovskite Through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells” has been published on Advanced Functional Materials journal. Congratulation to Mr. Ngoc Duy Pham!

Congratulation to Ricky for the success of his confirmation seminar!

Congratulation to Ricky for the success of his confirmation seminar!

Yang Yang (Ricky) gives a great presentation about his work in his confirmation seminar today 12 Oct 2018.

Title:

Inorganic Hole Transport Material to Improve Performance and Stability of Perovskite Solar Cells

Organic-inorganic hybrid lead trihalide perovskite solar cells (PSCs) have shown great potential for practical application in photovoltaic field with the rapid advancement of power conversion efficiency (PCE) from the initial 3.8% to a certificated 23.3% during the past few years. However, the instability of PSCs is regarded as the vital problem that restricts its progress of commercialization and industrialization in reality. Carbon electrode with low cost and high stability has exhibited powerful magnetism and competitiveness for the practical application of PSCs in the future compared to noble metal counterpart. Nonetheless, several issues such as poor interface contact with perovskite, obvious hysteresis behaviour, and inferior power conversion efficiency obstruct its further development. A simple yet effective method was applied by introducing CuSCN as hole transport layer to modify the interface of perovskite and carbon layer and impede the hysteretic feature in carbon-based planar heterojunction perovskite solar cells.

Awarded Certificate of Excellence

Awarded Certificate of Excellence

Prof. Hongxia Wang was awarded “Certificate of Excellence” by Department of Science, Information Technology and Innovation Queensland in 2015. Photo: Prof. Hongxia Wang with Minister of DSITI, Consulate-General of the People’s Republic of China, Vice-President of Chinese Academy of Science, China.